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Abstract. Due to improvements in image acquisition and storage tech-
nology, terabyte-sized databases of images are nowadays common. This
abundance of data leads us to two basic problems: how to exploit images
(image mining)? Or how to make it accessible to human beings (image
retrieval)? The specificity of image mining/retrieval among other simi-
lar topics (object recognition, machine vision, computer vision, etc.) is
precisely that their techniques operate on the whole collection of im-
ages, not a single one. Under these circumstances, it is obvious that the
time complexity of related algorithms plays an important role. In this
paper, we suggest a novel general approach applicable to image min-
ing and retrieval, using only compact geometric structures which can be
pre-computed from a database.

1 Introduction

In recent years, the amount of “non-standard” or multimedia data (in con-
trast with standard alphanumeric data) has greatly increased. Terabyte-sized
databases of images are now available for various purposes: medicine, astronomy,
physics, etc. but also digital photography: monitoring, online photo albums or
entertainment.

In general, the problem of extracting implicit relevant information has al-
ready been studied for decades by researchers from data mining. However, and
as described in [1], data mining techniques are not sufficient or fully appropriate
for image databases. Singularities of information in images make necessary the
design specific techniques and tools. These are being developed in the young
area of image mining (2, 3].

The other way to deal with such large collections of images is to make them
easily accessible to human beings. To tackle this problem of image retrieval, one
must provide a user interface to make the collection browsable, and a relevant
method for specifying search queries. In addition, the image collection has to
be ordered (indexing) in such way the system can quickly compute database
matches with user queries. Finally, the user should be able to give feedback on



the relevance of the results so the searching engine can possibly improve its
performance aftewards. Content-Based Image Retrieval systems [4,5] i.e. CBIR
systems are the realization of these ideas.

Image mining and image retrieval share the fact they both operate on whole
collections of images, in contrast to fields of object recognition, machine vision,
computer vision, etc. which analyse a single image, try to recognize a single scene.
Consequently, the time complexity of image mining/retrieval-related algorithms
must be taken into account, as well as the size of intermediate representation.

Until now, many indexing techniques have been reported in the literature
[6,7]. Thanks to an indexing schema, it is possible to filter the complete list of
elements in the database, in order to reduce the actual number of considered
images.

In this paper, we suggest a general approach for working with image collec-
tions, which can be seen as an alternative or a complement to indexing. It offers
the possibility to reduce the dataset by converting images to sets of points. This
compact representation along with a pre-computation step might speed-up de-
tection of spatial patterns in image mining or retrieval techniques. We present
a geometric data structure, variant of the Voronoi diagram, for recording in ad-
vance locations of empty shapes (i.e. spatial patterns) and thus saving time on
later treatments.

The next section deals with the “feature extraction step” for converting raw
image data to geometric data. Section 3 introduces the notations used through-
out the paper. A particular shape representation is presented in section 4. Then,
in section 5, we define the new geometric structure based on shapes. We out-
line computation and present some results in section 6. Finally, we conclude by
describing future work and other possible applications in the last section.

2 Image Analysis and Computational Geometry

Recently in image analysis, some research has been done in order to detect
so-called interest points in images. Interest points are sometimes called Spatial
Interest Pixels, [8]. Intuitively, an interest point corresponds to a pixel that has
stronger interest in strength than most of pixels in an image. Interest point
detection is often a particular form of edge/corner detection, but it can also
concern search methods in the color space [9]. For a list and evaluation of interest
point detectors, see [10]. This method constitutes a fast pre-processing step and
allows to work on more compact representations. A remarquable advantage is
that it can be combined easily with other tools of image analysis (histograms for
instance, as demonstrated in [11]) or computer science.

In connection with point sets, computational geometry (or cG) is a field
devoted to the study of algorithms which can be stated in terms of geometry.
The algorithms and data structures (e.g. the Voronoi decomposition) of cG are
designed for efficiency and have found numerous applications in various fields
of computer science, in particular: image processing [12], analysis, indexing [9],
retrieval [4].



In this paper, we present a novel data structure, based on points and geo-
metric shapes, suitable for image mining/retrieval tasks. This structure works
with specified models of shape, but these models could be learned on labelled
images as well.

Let us first consider the abstract problem and the structure in general before
showing its application to the field of Image Analysis. Let S be a set of points in
the plane. Being given a plane geometric shape, (that is, an open bounded region
of IRQ) is it possible to translate and rescale the shape in such way it has at least
one point of S on its boundary, while remaining empty? More generally what
is the set of solutions to the problem? i.e. how to locate all the free spaces for
fitting a particular shape into the set of points? The shape representation and
geometric structure introduced in the following bring an answer to this question.
The structure can be seen as a variant of the Voronoi diagram.

3 Notations and Basic Terminology

In this work, we use the following notations:

— pq: the euclidean distance between p and ¢

— [pq|: the segment of extremities p and ¢

b(x,r): the open disc of radius r centered on z. Its boundary is a circle, we
note it db(x, ). Mathematically:

b(z,r)={yeR ‘ yr <1}
ob(z,r)={yeR |yz =r}

R(p): the Voronoi region of a point p of S, S being a given set of points.
Mathematically, we have:

R(p)={z € R | pr < qx,Ygq € S}

— L= (l,...,l,) denotes a n-tuple (i.e. a sequence) of objects, where l; is the
first one, I the second one, etc.

Moreover, we introduce the following terms:

— Given a set of points S, an open bounded region A is said to be empty if and
only if ANS = 0.

— We call weighted point a pair constituted by a point and a real positive
number, formally: w = (p,r) where p € R*,7 € IR and r > 0.

4 Shape Representation

For convenience, in this section we shall abuse language slightly: Given a tuple
T of weighted points, a disc of T refers to an open disc b(c,r) where (¢,7) is an
object of T

Definition 1 requires two preliminary concepts introduced below. Given T =
((c17 r1), (e2,72)s -, (Cm, rm)) a m-tuple of weighted points, it is accepted that:



— Two discs b(c;,7;), b(cj,rj) of T are said to be adjacent discs iff: the
smallest has its center on the boundary of the biggest, i.e.

cj € 8b(cz-, T‘i) if Tj <r;
¢i € 9b(cj,r;) otherwise

— Let V ={c1,...,cn} be the set of all the points listed in T'. Let E be the set
of segments [c;c;] such that the discs b(¢;, ;) and b(c;,7;) of T are adjacent
discs. The resulting straight-line graph (V, E) is the adjacency graph of
T. An example of an adjacency graph is shown on Fig. 1.

@a

Fig. 1: Representation of a shape-parameter list and its adjacency graph (dashed line)

Definition 1. A shape-parameter list C = ((01,7"1)7 (co,72), ..., (cm,rm)) 18
an m-tuple of weighted points which satisfies the three conditions:

1. The two first discs of C are adjacent discs

2. The adjacency graph of C is connected

3. Let C’ be the list of the k first discs of C, where 1 < k < m. The adjacency
graph of C' is also connected.

Definition 2. Given a shape-parameter list C = ((¢1,71), ..., (Cm,Tm)), we de-
fine the shape-model p,,,(C) as being the open bounded region obtained by the
union of all the discs of C:

m

Pm(C) = |J bles )

i=1

The centers of the two first discs of C (i.e. the points c1, o) are called reference
points of the shape-model p,, (C).

An example of a simple shape-model is shown on Fig. 2a (its shape-parameter
list is represented on Fig. 2b).

As we will see in section 6, that representation allows us to create complex
shape-models and even good approximations of real objects silhouettes. Some
examples are given on Fig. 3.



(a) A particular four disc (b) illustration of the asso- (¢) Shape parameters of an
shape model ciated shape parameters  instance located at the ori-

gin, of size 1

Fig. 2: Concepts for shape representation

Fig. 3: Sophisticated shape-models, approximating real-world 2D pictures



Definition 3. Given a shape-model p,,,(C), we call instance of p,,,(C) located
at © and of size \ the region of the plane defined by:

m

P (Co, A) = | b(c}, 7))

i=1
Where ¢, 7} are given by:

—d =z, andri =\
—d=z+aleg—c), andr, =ar; for2<i<m
— o is the rescaling factor: oo = 2 and X\ the resulting size.

r1’

For short, in the following we shall use the term instance for refering to: in-
stance of a shape-model located at a certain point and of a new size.

An illustration of this concept is shown on Fig. 2c.

Interpretation: Given a shape-model M7 = p,,,(C), its instance is a new shape-
model My = p,,,(C, 2, A), which has x and x4 a(ca —¢1) for reference points while
being similar to M; (similar: there exists an affine transformation that takes Mo
to Ml)

Interpretation of the Calculi: The coordinates ¢, and numbers r; are defined
in order to perform an affine transformation which combines: translation and
homothety (no rotation). This transformation is fully parameterized by z, \.

5 Regions of Expanded Empty Shape-models

We have defined shape-models precisely. Thanks to this preliminary work, given
a shape-model, new instances can be computed. An instance is parameterized by
a point and a real number, and the original shape parameters are known. Thus
all the geometric information (boundary, disc overlap, etc.) is computable. We
can determine wether a particular instance is empty or not, has a point on its
boundary or not, etc.

Definition 4. Given S a set of points of the plane, and p,(C) a m-disc shape-
model, we call region of expanded empty shape-model associated to p € S
(REES of p € S for short) the region defined such that:

Re(p) = {z € R? | pu(C, 2, pz) N S = 0}

Fig. 4 illustrates this definition with few simple shape-models and associated
regions.

Intuitively, R¢(p) represents the locations « € IR where the shape-model p(C)
can be translated (ie. its first center becomes z) and expanded until it has p on
its boundary, while remaining empty of S.



(a) repr. of C4 (b) repr. of Cs (c) repr. of Co (d) repr. of C:
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Fig. 4: Trivial shape-models and associated regions for a 3-point set. The regions are
the set of points where the shape-model can be translated then rescaled until it has a
site on its boundary, while remaining empty.

6 Practical Results

Shape-models as presented in this paper can be build from 2d silhouettes as
shown on Fig. 5. Actually, that disc-based shape representation has already
been introduced in previous work. Despite of the fact the representation has
been slightly modified and reformulated since then, the construction of approx-
imations from silhouette remains identical. For details on this process, see [13].

(a) input: 2d silhouette  (b) output: a shape-model

Fig. 5: Building process of a shape-model for approximating a given silhouette as well
as possible (notably using the so-called medial axis or topological skeleton)

In the section 2, several methods for interest points detection, along with the
possibility to used it as a pre-processing and combine it with other tools, were
mentionned.



Accordingly, we can use our geometric structure with images. After choosing
a suitable method for interest points detection (‘suitable“ would be application-
specific), a whole image collection used for data mining/retrieval can be con-
verted in advance into a collection of point-sets.

Firstly we have implemented the well-known Harris detector [14] and ran the
algorithm on grayscale images in order to find mostly spatial pixels of interest.
Some results are shown on Fig. 6. Note that by pre-computing point sets for
each image in a database, it is possible to save space and the structure proposed
previously can still work on these points sets for detecting spatial pattern (empty
of points).

Fig. 6: Computation of pixels of interest using the Harris detector on grayscale images,
in order to convert images to simple point sets

Having computed both point sets and shape-models from silhouettes, the
computation of REES can be made. The definition mentionned in previous sec-
tions being equivalent to a system of inequalities (to test the emptiness of the
shape is to test the distances between centers of discs constituting the shape-
model and points/sites), the calculation boils down to approximating each region
using linear algebra and algebraic methods, like the resultants. Thus each ele-
ments of the system is simply considered as the part of a two variable polynomial.

The result of such regions computation is shown on Fig. 7.

For application to CBIR systems, geometric models could be specified in ad-
vance and the user would select one and indicate its approximate location in
the picture he is searching. We have chosen this scenario but other possibilities
are offered by the geometric structure. Two facts are worth of interest with this
approach:

— The computation of regions is still a part of the pre-computation (before any
user query)

— The classic matching step is replaced by a simple point in polygon algorithm
(REES being approximated by polygons).

Therefore good performances are expected but this cannot be strictly demon-
strated yet.



Fig.7: REES and an empty instance. The triangle represents the location of the in-
stance’s reference point. According to the definition, it is know the whole shape-model
is empty of points iff its reference point is located inside a region R¢(p)

Similarly, at this point of our work it was not possible to make comparisons
with other CBIR methods as a whole framework integrating all steps is required
(image to point sets conversion, shape-models construction and computation of
regions). However in this section we have presented meaningful results already
obtained for each separate step.

7 Conclusion

This paper presented a theoretical structure and explained in what way it could
be used for image mining and retrieval. The actual computation of this structure
relies on algebraic calculus. Indeed, the introduced REES can be decomposed into
simpler regions (just like the Voronoi diagram can be decomposed in halfplanes).
Each simpler subregion can then be expressed with an inequation. All in all, the
computation boils down to algebraic system of inequations solving.

Currently we use the computational software Mathematica for this task. Our
implementation produced the illustations presented in this paper and scales up
well, up to hundreds of discs and points.

If fully described and developed, this new structure might have numerous
applications, like the classic Voronoi diagram, because problems involving prox-
imity informations are general, and found in many of areas of science. New
shape-based algorithms for image mining and retrieval could be designed. The
presented structure could also be worth of interest for robotics path planning
problems.



As future work, we aim at: achieving the REES computation and coding in
a stand-alone application. It would let us studying precise time complexity for
both region construction and point query. The most interesting future prospect
is the setting of a whole CBIR framework (using together all the steps presented
in the previous section) in order to test the structure in practice and notably
compare it to existing techniques.
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